Designs and Tips for Building a DIY Dry Curing Chamber

Share this:

Writer / Enthusiast / Meat Curer / Forager / Harvester | About Tom

For decades, immersed in studying, working, learning, and teaching in the craft of meat curing, now sharing his passion with you through eat cured meat online resource.

Over the past twenty years, I have converted various fridges for dry-curing meats in environmental chambers. I’ve advised many in the community on designs and decisions related to dry-cured meat.

These converted fridges create environments for many curing or food-related projects – which I’ll also mention.

This fridge conversion was one of the first ways I began curing and drying meat many years ago. Now, I make, study, teach, and seek out cured meat worldwide.

Key Points

  • Building a dry curing chamber (more on chamber design) is easy. Repurpose a regular fridge or wine fridge.
  • Useful Components include plug-in controllers, humidifiers, racks, filters, fans, and heaters.
  • Avoid lighting in the fridge; it can deteriorate the meat fat during drying.
  • Mold inside the dehumidifier and humidifier must be cleaned with vinegar monthly.
  • Expandable rods can help minimize drilling holes into the internal walls of the fridge.

How To Build a Curing Chamber

(click to jump to section below)

  1. Decide on Design
  2. Choose Components
  3. Assemble & Balancing Environment
  4. Balancing Environment and Tips

You can do this project for under $300 (USD) most of the time. A second-hand fridge or wine fridge forms the base for building the DIY chamber, all cover what type of fridge below I’ve found works effectively.

The fridge insulation is suited to holding a temperature that solves one part of it.

If this seems like a project you’re not willing to pursue, but you still want to meat cure with a beginner project. I have some trial and error but eventually figured out a technique that produces consistent results; check out the full post on dry-curing meat in my regular kitchen fridge here. Also, a conducive environment around your home may suit you as well.

The main aspect for a DIY chamber is to use controllers to control the humidity and cycle the fridge temperature on and off to reach desired ranges.

It can take some testing. It’s not about an exact temperature. I’ve found it works within a certain range to consistently produce delicious dry-cured meats (and many other projects – dried spices/vegetables, fermenting alcohol, growing mushrooms, fermenting salami etc.).

Approximately – 50-60°F or 10-15°C is the target temperature in the fridge.

The whole point is to avoid the outside of the dry cured meat going hard before the center has dried out enough – by keeping the moisture/humidity high (70-80%) this can be achieved.

My first fridge, out of six I’ve built, was a commercial double-door 250 gal bar fridge ($ 400 USD- second-hand).

It can be a straightforward setup because many components are now just plugged in directly to the controllers. However, subtle aspects of balancing the fridge environment are also what I want to share.

Another approach: I hardwired the electrics with an Electrical Engineering friend, and we put it together many years ago – thanks, Andy!

Full Detail – Building A Dry Curing Chamber

1. Design Factors

I have experimented, researched, and tested many designs. The most accessible options I have found are:

  • Using a Used Fridge
  • Using a Wine Fridge

The difference between these two mainly comes down to size and temperature; you can get large wine fridges, but they seem harder to find second-hand.

Some wine fridges have different settings, and the ‘red wine’ setting can be just about perfect for curing meat, i.e., 55-65°F/12-16°C.

Wine Coolers/Fridges may have either compressors or thermoelectric (best avoided because it’s harder to control the humidity) based cooling.

For both these options, you must control the humidity mainly to keep the fridge in a ‘moist’ environment (70-80%).

I have created a pdf ebook about DIY fridge meat curing designs, you will see links to it on this page. Here is a picture of the design used widely in the home meat-curing community:

Control system schematic for a climate-controlled curing fridge environment showing connections between mains power, humidity and temperature sensors, and corresponding cooling/heating and humidifying devices, along with a variable fan for air circulation.
Plug In Controllers, 1x for the Fridge and potentially one for a ceramic bulb. The Humidity Controller has a Humidifier and Dehumidifier plugged in. Fans are used in the fridge walls for airflow control.

Other options include hanging dry cured meat in a cellar, basement, or other area around the home. If the temperature and humidity are suitable, it can work—however, one must expect some variation in results.

I have also used these converted fridges to:

  • grow mushrooms
  • hang meat to age
  • dry fruit/spices/vegetables to make powders
  • ferment beer/wine
  • make jerky/biltong. (Needed heating for some of this, though)

You may need to install a few components into the fridge so you want enough space to hang your cured meat. Another option is piping to keep the humidifier outside the fridge area.

Used Fridge Design

Ideal Style of Fridge to Convert:

  • Full Fridge, no freezer compartment for more straightforward conversion
  • Frost-free design (doesn’t have coolant panel at back, older models do have this)
  • Racks available
  • The door seals are in good condition

If the whole area is a fridge (no freezer area), you don’t have to pull out the reciprocating saw or another cutting device to join the areas, which may have coolant pipes or other internal structure inside the wall of the fridge.

You don’t need a freezer area for this project, though many fridges will have them. I have worked on a few.

Just cutting a hole between the two chambers will mean you can control the environment in both areas (it’s a messy job often, with insulation, wiring, and coolant pipes).

If you can obtain the schematic plans and wiring of the fridge, you will have more information to work with. The modification will be much easier once you have identified the wiring/coolant pipes.

Temperature & Humidity

Temperature

My kitchen fridge operates around 36°F/3°C, but you want more like 52°F/11°C for most dry-cured meat projects.

The design must consider turning the fridge’s compressor on and off (with the temperature controller). Even in the highest setting, most fridges won’t get above 45°F/7°C when in regular operation.

Some basic DIY skills will be required for this job

Lower temperatures can mean slower drying.

LowIdealHigh
46°F52°-60F60°F+
8°C11-15°C15°C+

Humidity

LowIdealHigh
60%75%85%

Most modern fridges are frost-free, if you acquire an older fridge, make sure it is frost-free. Frost-free means you have a dry environment, so you will need a humidifier and a humidity controller (hydrostat control) to get the humidity in the target dry-cured meat range (70-80%).

I’ve used non-frost-free, which is doable, too; you have more moisture from the cooling panels and need a dehumidifier.

When I have measured cycling fridges, the air that comes into an unmodified frost-free fridge seems to run at 20-30% humidity.

I aim for about 5-10% variation in target humidity (75% mostly) and a 36-40°F/ 3-4°C variation in temperature.

It will depend on what you are making, but let’s generalize.

Moisture/Humidity is the more challenging variable just remember that this factor isn’t independent of temperature.

Target 75% plus or minus 5-10%

(70-80% is where I like it generally)

It can take some fine-tuning to get this consistent, and it will change as it passes through the chamber.

The key is not to have an overfull fridge; I have found the salumi doesn’t like it. Once it has lost most of its weight and moisture has been removed from the cured meat, fridge variables are easier to control.

Getting to know the cycling of the compressor will take time to test.

Hanging Rack Design

Planning how you will hang the meat is important before even buying a fridge I’ve found. Hanging means less contact with any surface, keeping the cured meat cleaner. Gravity also assists in the drying process.

With smaller units, using a metal L bracket on both sides of the fridge at the top is possible.

You then can slide in and out a bar/wooden stick.

Or, in one instance, I used the rack and chopstick method below.

Chopsticks with string looped around for hanging salami in a drying fridge.
I used chopsticks for hanging, S hooks on a metal bracket are another common way

Your hooks will then go onto this bar or wooden stick.

After processing 80lb/40kg of wild beef (cattle beast), venison, and pork, I had too much salami. I drilled holes in the ‘condiment holders’ on the door. This allows me to thread more salami up through the holes and secure them with…chopsticks of course.

I also needed 75 hooks for this batch! Below is excessive amounts in a converted fridge.

An original idea I had was that an expandable shower curtain bar like this pictured below could work. I have a page on hooks/racks here! Thicker varieties definitely can hold more weight.

A lot of variations in salami made at home hanging in a DIY curing chamber, which is a converted domestic fridge, the door is open to see all the salami.
Went a little crazy with a lot of wild cattle beast meat and harvested wild venison – Dry Cured Salami Flavors – Picante Soppressata, Pepperoni, Hungarian Smoked, Balinese Sucuck (Ginger, Garlic, Turmeric, Galangal) and Turkish Sucuck (Ginger, Cumin, Garlic)

Controller Designs

When I began meat curing, plug in controller did not exist.

Plug-In Controllers – Easy Way

Toys? No, not at all.

Temperature Controller

A temperature controller (review of inkbird here I wrote) does the same job as the built-in fridge thermostat. You are in control and can cycle on the fridge on/off to reach the target dry curing temperature.

Think about where you want this component mounted outside the fridge. Then, you will have a wire for the temperature probe/sensor running in the fridge. You will want to use the sensor around the refrigerator’s middle to give an accurate reading.

There are even some Wi-Fi options for remote monitoring.

Getting to the 50-60°F/10-15°C range for longer-term cured meats is as simple as switching the compressor on and off through the controller (I wrote a page on this also).

Humidity Controller

Controllers for turning on/off humidifiers and dehumidifiers to reach a target range inside the fridge.

You want to mount a humidity controller outside the fridge.

Then, for the most accurate readings, have the probe/sensor positioned inside the fridge around the middle, not directly where the humidifier points. Here is a picture of the sensors inside the fridge.

Temperature and humidity Sensors

When drilling holes, consider the internal wiring/pipes through the insulation. This is crucial. I have ruined fridges due to drilling coolant pipes in walls.

Hardwired Controllers

My first DIY conversion was before plug-in controllers were available.

I had to enlist the help of an electrical friend to do this part on the fridge.

Setting up the hardwired controller system

An enclosure to keep the controllers makes my setup much tidier for a hardwired option.

Two digital thermostats, part of the meat curing equipment, mounted on a gray surface, with one displaying a faded readout and the other showing clear numerical temperature values.

Wine Fridge Option

Wine fridges seem to keep in the right temperature range often. My friends have a setting for champagne, white, and red wine. It even maintains about 55-75°F/12.8-23°C. However, even though there is a fan built into it, it doesn’t seem quite to get the airflow needed or air exchanged for dry cured meats.

The designs I have seen involve a hydrometer hooked up to a humidity controller. This worked great for her, but she had to open the door daily.

2. Components

I’ve written pages for many of the components. Links to what I’ve used or can recommend:

Optional:

Wine fridges can be compressor vs thermoelectric for cooling – compressor wine coolers sometimes have designs that can recirculate the moisture also; I’ve not tested this.

Thermoelectric should be avoided since controlling humidity is hard; compressors generally dry while cooling.

Tools

  • Drill and Drill bits
  • Food-grade sealant (for holes)
  • Screwdrivers

If you don’t want to drill into the insulated walls, you can run the sensor cables through the fridge door.

Hanging & Rack Design

I got lucky with my large fridge the first time because I could easily set up hooks with versatile and adjustable shelving.

Metal bracket system along the top of the fridge works well. Since you will be hanging most of the meat, you want to get the maximum amount of hanging space. Fridge shelves aren’t generally close to the ceiling of the fridge.

S hooks are a great way of hanging meat. Because you will be checking the weight loss often, you want something quickly taken off and hung back up. I have gone through a phase of tying and untying, which isn’t very efficient.

I also came up with an expandable rod idea for no penetrations; you can check it out on the curing chamber rack system page here.

Controllers Plug & Play / Hardwired

It is important to have controllers that can handle all the various plugs. Some friends opted for simpler controllers and needed to add more components.

Plug & Play Humidity Controllers

Some excellent plugin controllers have been proven for specific applications and do great for DIY meat-curing chambers.

An issue you may have is not being able to reduce humidity; you may be relying on the fridge’s cooling compressor to help decrease the humidity (or a heat source, if you go down that track).

You could look at the variable-control ceramic bulb heat option to help control this, to be honest, a dehumidifier is a good option.

1/16 DIN Humidity Controller (Hardwired)

This is the hardwired option. I would only suggest it if you are electrically qualified or have an electrician friend.

I have used this device for temperature control (but they also do temp or humidity versions), and it has worked well for many years. However, the programming is not user-friendly, so we have to read the instructions seriously. I know it’s a pain, but I think it’s because of this humidifier controller’s commercial application.

For instance, I’ve seen this controller in butchers’ and delis’ controlling walk-in chiller rooms.

You need to understand how the buttons and options work, setting the higher and lower humidity thresholds and the variations when it turns the circuits on.

I would still recommend these for a hardwired option. If I ever wanted to go even bigger, I know this controller would be reliable.

It would be best if you also had an enclosure for the controller like this..

Drilling holes of the right size and putting some conduit connector fittings on will hold it all in place.

3. Assemble & Balancing Environment

Sterilize Once the Fridge is Empty

Wiping the inside well with diluted bleach or plain vinegar before using it will get the chamber off to the best start.

Remember, you are trying to control natural variation in outcomes that may happen.

Once the penicillin finds an invisible home in the curing chamber, you will indeed have ongoing success! It can bloom naturally or innoculate the chamber with a culture.

As you progress with learning about dry-cured meat making, you’ll become familiar with mold. (The white powdery substance on quality dry-cured salami you may have seen is this good mold!).

Using plain vinegar (white, malt, or red wine – anything that works) to wipe off the not-so-good bacteria may be more necessary at the start when good mold is still developing a home on your cured meats. – here is an article I wrote about cured meat molds.

Please ensure all the power is off to the fridge before commencing any modification for safety’s reasons.

4. Tips Learned Through Experience

Humidifier – Ultrasonic Type

Both humidifiers and dehumidifiers will start to accumulate mold; you will need to clean them regularly.

Ensure the humidifier is ultrasonic since it has a much finer mist output.

Also have a look what happens when other components develop mold that’s unwanted:

The tank size is a 2-quart minimum; you don’t want to fill the humidifier daily. If you get the temperature cycling and design right, maybe only every week or two you will need to refill. But it will also depend on your space inside the fridge.

Humidifier Internal or External

You can put the humidifier outside of the fridge. Then, you use some hosing or pipe to enter the curing chamber. This can create more space for hanging cured meat!

The humidifier can generate heat for smaller curing chambers, so having it outside can help keep it cooler.

The downside is that the moisture can build up and grow mold in the piping. Regular monthly maintenance is needed to avoid unwanted mold and bacteria.

Mold, whether it is good or bad – thrives in moist environments.

Dehumidifier (Dependent on Design)

It is essential to get the right size in proportion to the chamber. You also want to consider the tank.

Some humidifiers have external drainage outlets, which can also be used in the design. I didn’t worry about this, and most people will find you don’t need to empty the tank that often, maybe once every week or two, if the environment is reasonably stable.

Most people end up getting one, I have written the reasons and some links to a few that people have used, check out the dehumidifiers here.

Cooling Function – the Right Temperature

Because I went a bit crazy with the size, my issue is the compressor pumping much drier air into the chamber, this hasn’t been an issue with frost-free second-hand fridges. I find that cooling cycling takes quite some time to keep the temperature around 52°F/11°C; covering the area where the cool air gets pumped has improved my results.

The delay functions on controllers are essential, you want to ‘rest’ the compressor between cycles for longevity.

With smaller units like bar fridges, the small area should also be easier to control, with less cycling of temperature or humidity.

Heating – for Fermentation, Humidity Control & Drying

Several designs I’ve used have included some form of heating.

A normal light bulb can be used, through experience I have learned this isn’t a good idea.

Light in the curing chamber affects the meat’s bacteria and fat.

If you think about those giant Parma Ham and prosciutto hanging in Italy, they tend to be in darkened areas.

A non-light-emitting bulb (ceramic) will work very well. When you put this on a variable controller or hook it up to your temperature controller, you can produce some heat to cycle on and off, lowering the humidity a bit.

These types of adjustable ceramic bulbs are used in reptile enclosures, not the easiest to find, but here is a page on them I wrote about factors to get the right one.

Air Flow

Fans are a great way of bringing air into and out of the curing chamber. If you choose a plug-and-play design control system, you can have the plug share one of the controllers or hardwire to one of the inputs.

The fan will run when the cooling happens to exchange some of the air in the chamber.

Filtering Air – HEPA

After a few years, I decided to dissect a new HEPA filter for a vacuum cleaner. I used this to filter the incoming air. For obvious reasons, having filtered air helps protect that precious white penicillin culture that will eventually thrive in your curing chamber.

Testing the Temperature and Humidity

Having a secondary testing apparatus for temperature and humidity can help a lot. You will find different readings in different areas of the chamber, apart from positioning sensors around the middle of the chamber.

You may want to think about equipment placement before starting alterations, of course. The plans I can email you show example diagrams & pics).

Case Hardening on the Exterior

If the cured meat is hard on the outside but hasn’t lost 35% weight, you can vacuum seal it and leave it in the kitchen fridge for 4-8 weeks. This will help it equalize evenly (it is often done for salumi and salami produced at home).

From my experience, this can be done for years. I have 4-5 years of vacuum-packed finished dry-cured meats in the kitchen fridge.

For another perspective on making a chamber, here is a good write up I researched also more recently.

Salt is the critical ingredient for curing meat, I wrote about salt and meat curing in detail here.


Share this:

Comments

  1. Hi

    I am a beginner on this, converting a fridge to a drying chamber for our son. I found your article the most helpful so far, easy to read, not too much tech. Stuff and a clear step be step guide

    The one thing I need now is to put the fridge to a test on drying a piece of meat, but where can I get some practical advise on that

    Thank you a million for your article

    Bob

    1. Author

      Hey Bob, glad you found the post useful!

      If you want to see if it works, it’s generally trial and error. If it was me, I would start with a small piece of meat definitely so see how it goes.
      Sometimes it just takes time for ‘natural’ white powdery penicillin to grow inside the curing chamber. But if you get a little bit of non-‘flour’ looking mold, you just wipe off whatever else with some vinegar.

      If the curing chamber can operate around 70% humidity (variation of 5-10% doesn’t matter too much) and you can keep the temperature around 52F / 11C (some variation doesn’t matter either – 2-4 C deg or + or – 35 deg F. You will be on to the right track. Whenever you put in new cured meat, obviously the humidity will be higher due to moisture on the meat.

      This post may help if you haven’t seen it – How to Cure Meat at Home
      Hope this helps,
      Tom

  2. Thanks for the article. I am following your suggestions and have ordered the relevant bits and pieces. This will be my first attempt at Salamy etc. Your directions are simple and easy to understand. Thanks again. Lockie

    1. Author

      Hi Lockie,
      Hey thanks, heaps, appreciate your comment and glad its be helpful.:-)

      If you need any help, just fire through the questions.

      All the best,
      Tom

  3. Hi, this is a great article and website, thanks for making it!

    i’ve just set my curing chamber up but having problems with the humidity controller (WH8040, i think the same as linked), it just displays the HHH error but i can’t for the life of me find anything in the instructions or online on how to fix that. Any advice would be greatly appreciated.

    Cheers

    1. Author

      Hey Patrick, I dug this up for you -….” PU:Delay to start,When relay stop output and start timing,the interval of time must greater than delay start time to avoid start frequently.HP:temperature upper limit alarm:when temperature exceed upper limit alarm,digital tube display”HHH”,temperature lower than alarm setting it will return back from alarm automatically.”

  4. Hi Tom,

    in the section of the testing of the fridge, you give the temperature range, for Celsius i think it is okay but for Fahrenheit don’t you mean to say 52F + or – 5.4F? Because while it is true that 3 Celsius is 34F as a temperature, 1 degree Celsius change is 1.8F so 52F + or – 34F would mean that a temperature between 18F and 86F is okay. That would translate in to -7.8 Celsius to 30 Celsius. While you mean to say somewhere between 8 and 15 Celsius (which is what you do on the Celsius part of that section but not on the Fahrenheit part).

    For the rest this is a wealth of information! Thank you and keep up the good work!

  5. I’m just starting out with a new curing set up but I’m finding it difficult to control the humidity during the compressor cycling. I have it set to 11C (+2/-1) and 70% (+10/-2). It takes it approx. 45-60 min for it to climb from 11 to 13C which is the upper limit that I set. during this time the humidity is fine. But once the compressor and fan kick on the humidity drops to ~58%. It jumps back up to ~75% relatively quick (few mins). I;m running it empty at the moment to get the timing down before trying bresaola. My humidifier is on the bottom. would it help to move it up in the chamber?
    Any other thoughts or suggestions?

    1. Author

      depends on the fridge/compressors. I had a commerical type that did dry out things a little fast too. Can try diffusing the fan if the compressor has one, so its not so direct. This is the variation one gets with fridges and part of the challenge!

  6. Hello, I have a small refrigerator that I’m looking into converting I did my research and downloaded the instruction Manuel for it. The only thing concerning me is it says in the notes that if the refrigerator is turned off or unplugged at all you have to wait 3 minutes to turn it back on or it will not work. Will this be affected by the plug and play controllers that were suggested for this build?
    Thanks
    Brian

    1. Author

      not sure! lots of variables in this craft my friend. From what I’ve seen compressors on ‘most’ fridges are fine. And usually due to the insulations it shouldn’t cycle on for 10 mins + anyhow! Cheers Tom

  7. Why would you avoid a Thermoelectric fridge?

    I live in a very small apartment so I am looking to make a curing chamber out of a wine cooler fridge.
    This fridge will be in the living area so noise will be a factor I consider. I have seen most wine fridges seem to be about 42 decibel range for the small size I am considering.

    1. Author

      Haven’t tried one, but supposedly with no drying effect from the compressor, it may take a lot of controller work with a dehumidifier and humidifier to keep in a good range.

  8. im going for the wine fridge route. do you have a bit more details on the frequency and how long he opens the wine fridge door?

    1. Author

      couple a mins every day maybe, they all seem to be a bit different. avoid thermoelectric as mentioned, go for compressor. Cheers Tom

  9. Hi,

    Firstly, love the website. Finding it super useful as a reliable, consistent source of fact-based info.

    I’ve been curing smaller, whole muscles for a while now and would like to move on to larger projects (e.g. coppa) and salamis that may take 3 months or more to cure fully. I only have a small fridge and don’t really want to occupy it entirely for so long with these bigger pieces.

    So my question is; how sensitive are larger cuts/salamis to temp/humidity variations later >1 month into curing – my gut feel is ‘less so’ but would welcome your opinion, based on experience of other products/techniques. Reason for asking is that I live in a warmer, humid part of the world and I can probably achieve 60-80% humidity and 18-22 degrees C for half the year in a storeroom. So I’m wondering whether after the first month or so, when water concentrations decrease most rapidly, and relative salt/cure concentrations have increased along with the acidity a bit, I could shift salamis etc. to this warmer, less controlled environment. Or would I the case hardening/spoilage risk be simply too high in this range of conditions. Cure 2 would be used by default for salamis, cure 1 would be optional for coppa and could be used if it would add significant protection in this specific application.

    I realise there’s no absolutes here, but some help understanding the relative risk and whether this idea is a non-starter would be appreciated!

    1. Author

      Hey Gareth, glad you’re getting amongst it, nice!
      Please note these are guesses/observations!
      I’ve often come across dry cured meats in Italy and Spain where meat is just hung in the Salumeria (Italian dry-cured delis) and cafe/restaurants etc. Though this is after prob 30+ % weight loss.
      That white penicillin, if you have a decent bloom, helps a lot with the moisture loss regulation which prevents case hardening. Case hardening can be countered, by vacpac after weight loss to equalize the dry/moist bits.
      You could try and just keep a very close eye on it….
      Sliced salumi that I’ve put on boards, seem to start ‘sweating’ the fat around that 20C ish
      I remember in some airport in Europe, they had a Jamon specialist deli, they had about 50 dry-cured pork legs hanging, it was prob 22-24C – but the skin was likely to by stopping excess drying too
      I’ve always found up to 17-18C ok, 20+ not sure.
      Parma prosciutto producers I’ve visited (in Parma) have controlled environments for 3 months, then – when it’s not raining they leave the windows open, when it’s raining they don’t (80,000 pork legs a year, this is for 9+ months), again skin regulates moisture loss better (and the sugna lard paste they put onto exposed meat). FYI 2-3% pork leg wastage is acceptable in the dry curing pork leg industry! Reasons unknown…we can’t control everything!
      You have to make the call my friend!
      Cheers
      T

  10. I used a Chest freezer because I could get a cheap one. I found I needed a dehumidifier rather than a humidifier since there’s no drain and the cooling coils and all embedded in the walls. It was very easy to run all the wires in the back and it’s doing a great job so far. I’ll update when I get some meat out of it. The inkbird controllers are working pretty good, might do some more tinkering with the settings to get it to track a bit closer to my set points.

    1. Author

      sounds good, did you create airflow in / out? my chest freezer is just walls, I havent converted a chest freezer, but i used one as a ‘meat safe’ when harvesting wild game in the back of the truck, I ran it off a inverter. It didnt like the controller cycling it and had a fault. So i just hope the cycling of a freezer on/off wont wear out faster then a fridge, cheers Tom

  11. Hi Tom,
    Great article.
    If i have a Glass Front Wine Fridge that has a temp range of 5 c – 20 c will i still need an external Temp Controller.
    Thanks

    1. Author

      … did you get my pdf on diy conversion? should be on this page somewhere. dont think so, but depends always on design. humidity is key for long term. also too much light on a glass door can make fat go yellow rancid, a friend had this on a large commerical double door stagionella fridge! Cheers TOm

  12. Hi ! Thanks for your Blog it is really interesting.
    I made ine chamber already with a chiller. I would like to make a second one. I’m hesitant to get a Chiller with a inverter to save energy. Will it still work with a chiller with a inverter?
    Thanks for your insight

    1. Author

      Did the chiller run at a lower humidity? They generally do if compressor.
      I’ve ‘heard. you will need more control of humidity since inverter wont be running as dry.
      All the best,
      Tom

Leave a Comment